If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x-25x^2+144=0
a = -25; b = 1; c = +144;
Δ = b2-4ac
Δ = 12-4·(-25)·144
Δ = 14401
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{14401}}{2*-25}=\frac{-1-\sqrt{14401}}{-50} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{14401}}{2*-25}=\frac{-1+\sqrt{14401}}{-50} $
| 8x+38=3(-6-4x | | (0,-2)m=-2/3 | | 9x-3+14-7=21x | | c=37.09+50 | | 10x+28=2 | | x-25x^2-144=0 | | 3n+1=2+10 | | 14x-4-6x=12(x+11)-(4x+11) | | 3)8-9y=35 | | 9n=7.2 | | (-6,-1)m=1 | | H(t)=-t2+16t+63 | | 5x=15+3 | | -3(14-14x)=7(1-x) | | 0.9n=72 | | 4+a=4a+5/3 | | X=5x/6+25 | | (-4,2)m=1/4 | | 8^x=25 | | 27(x–9)=–4 | | (24-x)(20+x)=468 | | (5y+5)=(13y+5) | | -7-y=9 | | (3,-7)m=-1 | | 3x+(x-3)=253 | | -3(15r+3)-1=r-10 | | p2+5=10 | | 6a+11=1+4a | | -9.12x=72.96 | | (3)8-9y=35 | | (-1,-4)m=2 | | 1/2(7z-1=4z-3 |